Elements of causal inference: foundations and learning algorithms J Peters, D Janzing, B Schölkopf The MIT Press, 2017 | 2185 | 2017 |
Nonlinear causal discovery with additive noise models P Hoyer, D Janzing, JM Mooij, J Peters, B Schölkopf Advances in neural information processing systems 21, 2008 | 1188 | 2008 |
Avoiding discrimination through causal reasoning N Kilbertus, M Rojas Carulla, G Parascandolo, M Hardt, D Janzing, ... Advances in neural information processing systems 30, 2017 | 708 | 2017 |
Kernel-based conditional independence test and application in causal discovery K Zhang, J Peters, D Janzing, B Schölkopf arXiv preprint arXiv:1202.3775, 2012 | 703 | 2012 |
On causal and anticausal learning B Schölkopf, D Janzing, J Peters, E Sgouritsa, K Zhang, J Mooij arXiv preprint arXiv:1206.6471, 2012 | 659 | 2012 |
Causal discovery with continuous additive noise models J Peters, JM Mooij, D Janzing, B Schölkopf | 594 | 2014 |
Distinguishing cause from effect using observational data: methods and benchmarks JM Mooij, J Peters, D Janzing, J Zscheischler, B Schölkopf Journal of Machine Learning Research 17 (32), 1-102, 2016 | 563 | 2016 |
Information-geometric approach to inferring causal directions D Janzing, J Mooij, K Zhang, J Lemeire, J Zscheischler, P Daniušis, ... Artificial Intelligence 182, 1-31, 2012 | 358 | 2012 |
Thermodynamic cost of reliability and low temperatures: Tightening Landauer's principle and the second law D Janzing, P Wocjan, R Zeier, R Geiss, T Beth International Journal of Theoretical Physics 39, 2717-2753, 2000 | 345 | 2000 |
Feature relevance quantification in explainable AI: A causal problem D Janzing, L Minorics, P Blöbaum International Conference on artificial intelligence and statistics, 2907-2916, 2020 | 334 | 2020 |
Causal inference using the algorithmic Markov condition D Janzing, B Schölkopf IEEE Transactions on Information Theory 56 (10), 5168-5194, 2010 | 328 | 2010 |
Quantifying causal influences D Janzing, D Balduzzi, M Grosse-Wentrup, B Schölkopf | 266 | 2013 |
Causal inference on time series using restricted structural equation models J Peters, D Janzing, B Schölkopf Advances in neural information processing systems 26, 2013 | 215 | 2013 |
Inferring deterministic causal relations P Daniusis, D Janzing, J Mooij, J Zscheischler, B Steudel, K Zhang, ... arXiv preprint arXiv:1203.3475, 2012 | 213 | 2012 |
Causal inference on discrete data using additive noise models J Peters, D Janzing, B Scholkopf IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (12), 2436 …, 2011 | 196 | 2011 |
Identifiability of causal graphs using functional models J Peters, J Mooij, D Janzing, B Schölkopf arXiv preprint arXiv:1202.3757, 2012 | 176 | 2012 |
Regression by dependence minimization and its application to causal inference in additive noise models J Mooij, D Janzing, J Peters, B Schölkopf Proceedings of the 26th annual international conference on machine learning …, 2009 | 171 | 2009 |
A quantum advantage for inferring causal structure K Ried, M Agnew, L Vermeyden, D Janzing, RW Spekkens, KJ Resch Nature Physics 11 (5), 414-420, 2015 | 158 | 2015 |
Probabilistic latent variable models for distinguishing between cause and effect O Stegle, D Janzing, K Zhang, JM Mooij, B Schölkopf Advances in neural information processing systems 23, 2010 | 154 | 2010 |
Causal consistency of structural equation models PK Rubenstein, S Weichwald, S Bongers, JM Mooij, D Janzing, ... arXiv preprint arXiv:1707.00819, 2017 | 120 | 2017 |