Follow
Mingyang Sun
Mingyang Sun
Professor (Research), Peking University, Imperial College London
Verified email at pku.edu.cn
Title
Cited by
Cited by
Year
Probabilistic Individual Load Forecasting Using Pinball Loss Guided LSTM
Y Wang, D Gan, M Sun, N Zhang, C Kang, Z Lu
Applied Energy, 2018
3692018
Deep Reinforcement Learning for Strategic Bidding in Electricity Markets
Y Ye, D Qiu, M Sun*, D Papadaskalopoulos, G Strbac
IEEE Transactions on Smart Grid 11 (2), 1343-1355, 2020
2242020
An Ensemble Forecasting Method for the Aggregated Load with Sub Profiles
Y Wang, Q Chen, M Sun, C Kang, Q Xia
IEEE Transactions on Smart Grid, 2018
2092018
Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load Forecasting
M Sun, T Zhang, Y Wang, G Strbac, C Kang
IEEE Transactions on Power Systems 35 (1), 188 - 201, 2020
2072020
Fusion of the 5G communication and the ubiquitous electric internet of things: application analysis and research prospects
Y Wang, QX Chen, N Zhang, C Feng, F Teng, M Sun, CQ Kang
Power System Technology 43 (5), 1575-1585, 2019
164*2019
A deep learning-based remaining useful life prediction approach for bearings
C Cheng, G Ma, Y Zhang, M Sun, F Teng, H Ding, Y Yuan
IEEE/ASME transactions on mechatronics 25 (3), 1243-1254, 2020
1582020
A Deep Learning-Based Feature Extraction Framework for System Security Assessment
M Sun, I Konstantelos, G Strbac
IEEE Transactions on Smart Grid 10 (5), 5007-5020, 2019
1382019
Electricity Consumer Characteristics Identification: A Federated Learning Approach
Y Wang, IL Bennani, X Liu, M Sun, Y Zhou
IEEE Transactions on Smart Grid, 2021
1322021
C-vine copula mixture model for clustering of residential electrical load pattern data
M Sun, I Konstantelos, G Strbac
IEEE Transactions on Power Systems 32 (3), 2382-2393, 2017
1262017
Clustering-Based Residential Baseline Estimation: A Probabilistic Perspective
M Sun, Y Wang, F Teng, Y Ye, G Strbac, C Kang
IEEE Transactions on Smart Grid, 2019
902019
A novel data-driven scenario generation framework for transmission expansion planning with high renewable energy penetration
M Sun, J Cremer, G Strbac
Applied energy 228, 546-555, 2018
792018
Probabilistic peak load estimation in smart cities using smart meter data
M Sun, Y Wang, G Strbac, C Kang
IEEE Transactions on Industrial electronics 66 (2), 1608-1618, 2018
692018
An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources
M Sun, F Teng, I Konstantelos, G Strbac
Energy 145, 871-885, 2018
692018
Data-Driven Representative Day Selection for Investment Decisions: A Cost-Oriented Approach
M Sun, F Teng, X Zhang, G Strbac, D Pudjianto
IEEE Transactions on Power Systems, 2019
672019
Robust and automatic data cleansing method for short-term load forecasting of distribution feeders
N Huyghues-Beaufond, S Tindemans, P Falugi, M Sun, G Strbac
Applied energy 261, 114405, 2020
432020
Using Vine Copulas to Generate Representative System States for Machine Learning
I Konstantelos, M Sun*, S Tindemans, S Issad, P PANCIATICI, G Strbac
IEEE Transactions on Power Systems, 2018
422018
Recurrent Deep Multiagent Q-Learning for Autonomous Brokers in Smart Grid
Y Yang, J Hao, M Sun, Z Wang, G Strbac, C Fan
IJCAI-ECAI-18, 2018
422018
Deep Reinforcement Learning-based Demand Response for Smart Facilities Energy Management
R Lu, R Bai, Z Luo, J Jiang, M Sun, HT Zhang
IEEE Transactions on Industrial Electronics 69 (8), 8554-8565, 2022
412022
Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading
D Qiu, J Xue, T Zhang, J Wang, M Sun*
Applied Energy, 2022
392022
Federated Clustering for Electricity Consumption Pattern Extraction
Y Wang, M Jia, N Gao, LV Krannichfeldt, M Sun*, H Gabriela
IEEE Transactions on Smart Grid, 2022
392022
The system can't perform the operation now. Try again later.
Articles 1–20