Quantum machine learning J Biamonte, P Wittek, N Pancotti, P Rebentrost, N Wiebe, S Lloyd Nature 549 (7671), 195-202, 2017 | 2675 | 2017 |
Quantum support vector machine for big data classification P Rebentrost, M Mohseni, S Lloyd Physical review letters 113 (13), 130503, 2014 | 1398 | 2014 |
Environment-assisted quantum walks in photosynthetic energy transfer M Mohseni, P Rebentrost, S Lloyd, A Aspuru-Guzik The Journal of chemical physics 129 (17), 11B603, 2008 | 1345 | 2008 |
Quantum principal component analysis S Lloyd, M Mohseni, P Rebentrost Nature Physics 10 (9), 631-633, 2014 | 1070 | 2014 |
Environment-assisted quantum transport P Rebentrost, M Mohseni, I Kassal, S Lloyd, A Aspuru-Guzik New Journal of Physics 11 (3), 033003, 2009 | 975 | 2009 |
Simple pulses for elimination of leakage in weakly nonlinear qubits F Motzoi, JM Gambetta, P Rebentrost, FK Wilhelm Physical review letters 103 (11), 110501, 2009 | 677 | 2009 |
Quantum algorithms for supervised and unsupervised machine learning S Lloyd, M Mohseni, P Rebentrost arXiv preprint arXiv:1307.0411, 2013 | 669 | 2013 |
Role of quantum coherence and environmental fluctuations in chromophoric energy transport P Rebentrost, M Mohseni, A Aspuru-Guzik The Journal of Physical Chemistry B 113 (29), 9942-9947, 2009 | 401 | 2009 |
Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex S Shim, P Rebentrost, S Valleau, A Aspuru-Guzik Biophysical journal 102 (3), 649-660, 2012 | 259 | 2012 |
Quantum computational finance: Monte Carlo pricing of financial derivatives P Rebentrost, B Gupt, TR Bromley Physical Review A 98 (2), 022321, 2018 | 193 | 2018 |
Optimal control of a qubit coupled to a non-Markovian environment P Rebentrost, I Serban, T Schulte-Herbrüggen, FK Wilhelm Physical review letters 102 (9), 090401, 2009 | 174 | 2009 |
Non-Markovian quantum jumps in excitonic energy transfer P Rebentrost, R Chakraborty, A Aspuru-Guzik The Journal of chemical physics 131 (18), 11B605, 2009 | 158 | 2009 |
Modified scaled hierarchical equation of motion approach for the study of quantum coherence in photosynthetic complexes J Zhu, S Kais, P Rebentrost, A Aspuru-Guzik The Journal of Physical Chemistry B 115 (6), 1531-1537, 2011 | 154 | 2011 |
Quantum Hopfield neural network P Rebentrost, TR Bromley, C Weedbrook, S Lloyd Physical Review A 98 (4), 042308, 2018 | 151 | 2018 |
Quantum singular-value decomposition of nonsparse low-rank matrices P Rebentrost, A Steffens, I Marvian, S Lloyd Physical review A 97 (1), 012327, 2018 | 132 | 2018 |
Communication: Exciton–phonon information flow in the energy transfer process of photosynthetic complexes P Rebentrost, A Aspuru-Guzik The Journal of Chemical Physics 134 (10), 101103, 2011 | 128 | 2011 |
Quantum gradient descent and Newton’s method for constrained polynomial optimization P Rebentrost, M Schuld, L Wossnig, F Petruccione, S Lloyd New Journal of Physics 21 (7), 073023, 2019 | 127 | 2019 |
Robust excitons inhabit soft supramolecular nanotubes DM Eisele, DH Arias, X Fu, EA Bloemsma, CP Steiner, RA Jensen, ... Proceedings of the National Academy of Sciences 111 (33), E3367-E3375, 2014 | 121 | 2014 |
Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate JR Caram, S Doria, DM Eisele, FS Freyria, TS Sinclair, P Rebentrost, ... Nano letters 16 (11), 6808-6815, 2016 | 119 | 2016 |
Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes S Mostame, P Rebentrost, A Eisfeld, AJ Kerman, DI Tsomokos, ... New Journal of Physics 14 (10), 105013, 2012 | 119 | 2012 |