Ahsan Huda
Ahsan Huda
Head of Data Science AI/ML CoE at Pfizer
Verified email at
Cited by
Cited by
Epigenetic histone modifications of human transposable elements: genome defense versus exaptation
A Huda, L Mariño-Ramírez, IK Jordan
Mobile DNA 1, 1-12, 2010
A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy
A Huda, A Castaño, A Niyogi, J Schumacher, M Stewart, M Bruno, M Hu, ...
Nature communications 12 (1), 2725, 2021
Epigenetic regulation of transposable element derived human gene promoters
A Huda, NJ Bowen, AB Conley, IK Jordan
Gene 475 (1), 39-48, 2011
Repetitive DNA elements, nucleosome binding and human gene expression
A Huda, L Mariño-Ramírez, D Landsman, IK Jordan
Gene 436 (1-2), 12-22, 2009
Endogenous retroviruses of the chicken genome
A Huda, N Polavarapu, IK Jordan, JF McDonald
Biology Direct 3, 1-5, 2008
A Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags
J Wang, A Huda, VV Lunyak, IK Jordan
Bioinformatics 26 (20), 2501-2508, 2010
Epigenetic regulation of mammalian genomes by transposable elements
A Huda, IK Jordan
Annals of the New York Academy of Sciences 1178 (1), 276-284, 2009
Effect of the transposable element environment of human genes on gene length and expression
D Jjingo, A Huda, M Gundapuneni, L Mariño-Ramírez, IK Jordan
Genome biology and evolution 3, 259-271, 2011
Prediction of transposable element derived enhancers using chromatin modification profiles
A Huda, E Tyagi, L Mariño-Ramírez, NJ Bowen, D Jjingo, IK Jordan
PLoS One 6 (11), e27513, 2011
Analysis of transposable element sequences using CENSOR and RepeatMasker
A Huda, IK Jordan
Bioinformatics for DNA Sequence Analysis, 323-336, 2009
Widespread exonization of transposable elements in human coding sequences is associated with epigenetic regulation of transcription
A Huda, PR Bushel
Transcriptomics: open access 1 (1), 2013
Population differences in transcript-regulator expression quantitative trait loci
PR Bushel, R McGovern, L Liu, O Hofmann, A Huda, J Lu, W Hide, X Lin
PLoS One 7 (3), e34286, 2012
Implementing a machine-learning-adapted algorithm to identify possible transthyretin amyloid cardiomyopathy at an academic medical center
JD Mitchell, DJ Lenihan, C Reed, A Huda, K Nolen, M Bruno, ...
Clinical Medicine Insights: Cardiology 16, 11795468221133608, 2022
A machine learning model for the systematic identification of wild-type transthyretin cardiomyopathy
A Huda, SJ Shah, A Castano, A Niyogi, J Schumacher, M Stewart, R Deo
Journal of Cardiac Failure 25 (8), S53-S54, 2019
Performance evaluation of a machine learning model for systematic identification of wild-type transthyretin amyloid cardiomyopathy at two academic medical centers
S Heitner, MR Elman, A Masri, Y Aphinyanaphongs, A Reyentovich, ...
Journal of Cardiac Failure 26 (10), S38, 2020
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
G Papanastasiou, G Yang, DI Fotiadis, N Dikaios, C Wang, A Huda, ...
Communications Medicine 3 (1), 189, 2023
Epigenetic regulation of the human genome by transposable elements
A Huda
Georgia Institute of Technology, 2010
EstimATTR: A Simplified, Machine-Learning-Based Tool to Predict the Risk of Wild-Type Transthyretin Amyloid Cardiomyopathy
A Castaño, SB Heitner, A Masri, A Huda, V Calambur, M Bruno, ...
Journal of Cardiac Failure, 2023
Transthyretin amyloid cardiomyopathy among patients hospitalized for heart failure and performance of an adapted wild-type ATTR-CM machine learning model: Findings from GWTG-HF
AE Peters, N Solomon, K Chiswell, GC Fonarow, MG Khouri, L Baylor, ...
American heart journal 265, 22-30, 2023
Detecting transthyretin amyloid cardiomyopathy (ATTR-CM) using machine learning: an evaluation of the performance of an algorithm in a UK setting
C Tsang, A Huda, M Norman, C Dickerson, V Leo, J Brownrigg, M Mamas, ...
BMJ open 13 (10), e070028, 2023
The system can't perform the operation now. Try again later.
Articles 1–20