Teoretické otázky neuronových sítí J Šíma, R Neruda Matfyzpress, 1996 | 178* | 1996 |
Learning methods for radial basis function networks R Neruda, P Kudová Future Generation Computer Systems 21 (7), 1131-1142, 2005 | 129 | 2005 |
Modeling and discovery of data providing services R Vaculín, H Chen, R Neruda, K Sycara 2008 IEEE International Conference on Web Services, 54-61, 2008 | 64 | 2008 |
Radial Basis Functions Networks K Hlaváčková, R Neruda Neural Network World 1 (93), 93-102, 1993 | 52 | 1993 |
Evolving keras architectures for sensor data analysis P Vidnerova, R Neruda 2017 Federated Conference on Computer Science and Information Systems …, 2017 | 47 | 2017 |
Functional equivalence and genetic learning of RBF networks R Neruda Artificial Neural Nets and Genetic Algorithms: Proceedings of the …, 1995 | 37 | 1995 |
Meta learning in multi-agent systems for data mining O Kazík, M Pil, R Neruda 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and …, 2011 | 36 | 2011 |
Aggregate meta-models for evolutionary multiobjective and many-objective optimization M Pilát, R Neruda Neurocomputing 116, 392-402, 2013 | 30 | 2013 |
ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model M Pilát, R Neruda 2011 IEEE Congress of Evolutionary Computation (CEC), 1202-1208, 2011 | 30 | 2011 |
Vulnerability of classifiers to evolutionary generated adversarial examples P Vidnerová, R Neruda Neural Networks 127, 168-181, 2020 | 29 | 2020 |
An agent for asymmetric process mediation in open environments R Vaculín, R Neruda, K Sycara Service-Oriented Computing: Agents, Semantics, and Engineering: AAMAS 2008 …, 2008 | 27 | 2008 |
A genetic algorithm for multivariate missing data imputation JC Figueroa-García, R Neruda, G Hernandez–Pérez Information Sciences 619, 947-967, 2023 | 26 | 2023 |
Incorporating user preferences in MOEA/D through the coevolution of weights M Pilat, R Neruda Proceedings of the 2015 Annual Conference on Genetic and Evolutionary …, 2015 | 26 | 2015 |
Toward dynamic generation of computational agents by means of logical descriptions R Neruda, G Beuster International Transactions on Systems Science and Applications, 139-144, 2008 | 21 | 2008 |
An evolutionary strategy for surrogate-based multiobjective optimization M Pilát, R Neruda 2012 IEEE Congress on Evolutionary Computation, 1-7, 2012 | 20 | 2012 |
Bang 3: A computational multi-agent system R Neruda, P Krusina, P Kudová, P Rydvan, G Beuster Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent …, 2004 | 19 | 2004 |
Implementing GP on optimizing both boolean and extended boolean queries in IR and fuzzy IR systems with respect to the users profiles S Owais, P Kromer, V Snasel, D Huisek, R Neruda 2006 IEEE International Conference on Evolutionary Computation, 1499-1505, 2006 | 18 | 2006 |
Feature extraction for surrogate models in genetic programming M Pilát, R Neruda Parallel Problem Solving from Nature–PPSN XIV: 14th International Conference …, 2016 | 17 | 2016 |
Evolutionary generation of adversarial examples for deep and shallow machine learning models P Vidnerová, R Neruda Proceedings of the The 3rd Multidisciplinary International Social Networks …, 2016 | 16 | 2016 |
Deep networks with rbf layers to prevent adversarial examples P Vidnerová, R Neruda Artificial Intelligence and Soft Computing: 17th International Conference …, 2018 | 15 | 2018 |