Deterministic policy gradient algorithms D Silver, G Lever, N Heess, T Degris, D Wierstra, M Riedmiller International conference on machine learning, 387-395, 2014 | 5534 | 2014 |
Vector-based navigation using grid-like representations in artificial agents A Banino, C Barry, B Uria, C Blundell, T Lillicrap, P Mirowski, A Pritzel, ... Nature 557 (7705), 429-433, 2018 | 774 | 2018 |
Deep reinforcement learning in large discrete action spaces G Dulac-Arnold, R Evans, H van Hasselt, P Sunehag, T Lillicrap, J Hunt, ... arXiv preprint arXiv:1512.07679, 2015 | 773 | 2015 |
Off-policy actor-critic T Degris, M White, RS Sutton arXiv preprint arXiv:1205.4839, 2012 | 671 | 2012 |
Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction RS Sutton, J Modayil, M Delp, T Degris, PM Pilarski, A White, D Precup The 10th International Conference on Autonomous Agents and Multiagent …, 2011 | 624 | 2011 |
Model-free reinforcement learning with continuous action in practice T Degris, PM Pilarski, RS Sutton 2012 American control conference (ACC), 2177-2182, 2012 | 344 | 2012 |
The predictron: End-to-end learning and planning D Silver, H Hasselt, M Hessel, T Schaul, A Guez, T Harley, ... International Conference on Machine Learning, 3191-3199, 2017 | 317 | 2017 |
Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning PM Pilarski, MR Dawson, T Degris, F Fahimi, JP Carey, RS Sutton 2011 IEEE international conference on rehabilitation robotics, 1-7, 2011 | 207 | 2011 |
Learning the structure of factored markov decision processes in reinforcement learning problems T Degris, O Sigaud, PH Wuillemin Proceedings of the 23rd international conference on Machine learning, 257-264, 2006 | 162 | 2006 |
Tuning-free step-size adaptation AR Mahmood, RS Sutton, T Degris, PM Pilarski 2012 IEEE international conference on acoustics, speech and signal …, 2012 | 89 | 2012 |
Adaptive artificial limbs: a real-time approach to prediction and anticipation PM Pilarski, MR Dawson, T Degris, JP Carey, KM Chan, JS Hebert, ... IEEE Robotics & Automation Magazine 20 (1), 53-64, 2013 | 88 | 2013 |
Dynamic switching and real-time machine learning for improved human control of assistive biomedical robots PM Pilarski, MR Dawson, T Degris, JP Carey, RS Sutton 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and …, 2012 | 64 | 2012 |
Adapting behavior via intrinsic reward: A survey and empirical study C Linke, NM Ady, M White, T Degris, A White Journal of artificial intelligence research 69, 1287-1332, 2020 | 53 | 2020 |
A spiking neuron model of head-direction cells for robot orientation T Degris, L Lachèze, C Boucheny, A Arleo | 30 | 2004 |
Factored markov decision processes T Degris, O Sigaud Markov Decision Processes in Artificial Intelligence, 99-126, 2013 | 27 | 2013 |
Meta-descent for online, continual prediction A Jacobsen, M Schlegel, C Linke, T Degris, A White, M White Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 3943-3950, 2019 | 25 | 2019 |
Rapid response of head direction cells to reorienting visual cues: a computational model T Degris, O Sigaud, SI Wiener, A Arleo Neurocomputing 58, 675-682, 2004 | 22 | 2004 |
Chi-square tests driven method for learning the structure of factored mdps T Degris, O Sigaud, PH Wuillemin arXiv preprint arXiv:1206.6842, 2012 | 21 | 2012 |
Scaling-up knowledge for a cognizant robot T Degris, J Modayil AAAI Spring Symposium on Designing Intelligent Robots: Reintegrating AI., 2012 | 16 | 2012 |
Apprentissage par renforcement dans les processus de décision markoviens factorisés T Degris Paris 6, 2007 | 11 | 2007 |