Follow
Jason M. Altschuler
Title
Cited by
Cited by
Year
Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
J Altschuler, J Weed, P Rigollet
NeurIPS, 2017
6682017
Massively scalable Sinkhorn distances via the Nyström method
J Altschuler, F Bach, A Rudi, J Niles-Weed
NeurIPS, 2019
123*2019
Greedy column subset selection: new bounds and distributed algorithms
J Altschuler, A Bhaskara, G Fu, V Mirrokni, A Rostamizadeh, ...
International Conference on Machine Learning, 2539-2548, 2016
802016
Best arm identification for contaminated bandits
J Altschuler, VE Brunel, A Malek
Journal of Machine Learning Research 20 (91), 1-39, 2019
572019
Wasserstein barycenters are NP-hard to compute
JM Altschuler, E Boix-Adsera
SIAM Journal on Mathematics of Data Science 4 (1), 179-203, 2022
542022
Wasserstein barycenters can be computed in polynomial time in fixed dimension
JM Altschuler, E Boix-Adsera
Journal of Machine Learning Research 22, 1-19, 2021
502021
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss
JM Altschuler, K Talwar
NeurIPS, 2022
482022
Polynomial-time algorithms for Multimarginal Optimal Transport problems with structure
JM Altschuler, E Boix-Adsera
Mathematical Programming 199 (1), 1107–1178, 2023
422023
Online learning over a finite action set with limited switching
JM Altschuler, K Talwar
Mathematics of Operations Research 46 (1), 179-203, 2021
422021
Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent
JM Altschuler, S Chewi, P Gerber, AJ Stromme
NeurIPS, 2021
402021
Asymptotics for semi-discrete entropic optimal transport
JM Altschuler, J Niles-Weed, AJ Stromme
SIAM Journal on Mathematical Analysis 54 (2), 1718-1741, 2022
352022
Hardness results for Multimarginal Optimal Transport problems
JM Altschuler, E Boix-Adsera
Discrete Optimization 42, 100669, 2021
352021
Faster high-accuracy log-concave sampling via algorithmic warm starts
JM Altschuler, S Chewi
Journal of the ACM 71 (3), 1-55, 2024
322024
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
JM Altschuler, K Talwar
Conference on Learning Theory 195, 2509-2510, 2023
202023
Acceleration by Stepsize Hedging I: Multi-Step Descent and the Silver Stepsize Schedule
JM Altschuler, PA Parrilo
arXiv preprint arXiv:2309.07879, 2023
162023
Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimization
JM Altschuler, PA Parrilo
arXiv preprint arXiv:2309.16530, 2023
132023
Near-linear convergence of the Random Osborne algorithm for Matrix Balancing
JM Altschuler, PA Parrilo
Mathematical Programming 198 (1), 363–397, 2023
10*2023
Approximating Min-Mean-Cycle for low-diameter graphs in near-optimal time and memory
JM Altschuler, PA Parrilo
SIAM Journal on Optimization 32 (3), 1791-1816, 2022
92022
Greed, hedging, and acceleration in convex optimization
JM Altschuler
Massachusetts Institute of Technology, 2018
72018
Shifted Composition I: Harnack and Reverse Transport Inequalities
JM Altschuler, S Chewi
arXiv preprint arXiv:2311.14520, 2023
62023
The system can't perform the operation now. Try again later.
Articles 1–20