Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration J Altschuler, J Weed, P Rigollet NeurIPS, 2017 | 668 | 2017 |
Massively scalable Sinkhorn distances via the Nyström method J Altschuler, F Bach, A Rudi, J Niles-Weed NeurIPS, 2019 | 123* | 2019 |
Greedy column subset selection: new bounds and distributed algorithms J Altschuler, A Bhaskara, G Fu, V Mirrokni, A Rostamizadeh, ... International Conference on Machine Learning, 2539-2548, 2016 | 80 | 2016 |
Best arm identification for contaminated bandits J Altschuler, VE Brunel, A Malek Journal of Machine Learning Research 20 (91), 1-39, 2019 | 57 | 2019 |
Wasserstein barycenters are NP-hard to compute JM Altschuler, E Boix-Adsera SIAM Journal on Mathematics of Data Science 4 (1), 179-203, 2022 | 54 | 2022 |
Wasserstein barycenters can be computed in polynomial time in fixed dimension JM Altschuler, E Boix-Adsera Journal of Machine Learning Research 22, 1-19, 2021 | 50 | 2021 |
Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss JM Altschuler, K Talwar NeurIPS, 2022 | 48 | 2022 |
Polynomial-time algorithms for Multimarginal Optimal Transport problems with structure JM Altschuler, E Boix-Adsera Mathematical Programming 199 (1), 1107–1178, 2023 | 42 | 2023 |
Online learning over a finite action set with limited switching JM Altschuler, K Talwar Mathematics of Operations Research 46 (1), 179-203, 2021 | 42 | 2021 |
Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent JM Altschuler, S Chewi, P Gerber, AJ Stromme NeurIPS, 2021 | 40 | 2021 |
Asymptotics for semi-discrete entropic optimal transport JM Altschuler, J Niles-Weed, AJ Stromme SIAM Journal on Mathematical Analysis 54 (2), 1718-1741, 2022 | 35 | 2022 |
Hardness results for Multimarginal Optimal Transport problems JM Altschuler, E Boix-Adsera Discrete Optimization 42, 100669, 2021 | 35 | 2021 |
Faster high-accuracy log-concave sampling via algorithmic warm starts JM Altschuler, S Chewi Journal of the ACM 71 (3), 1-55, 2024 | 32 | 2024 |
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling JM Altschuler, K Talwar Conference on Learning Theory 195, 2509-2510, 2023 | 20 | 2023 |
Acceleration by Stepsize Hedging I: Multi-Step Descent and the Silver Stepsize Schedule JM Altschuler, PA Parrilo arXiv preprint arXiv:2309.07879, 2023 | 16 | 2023 |
Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimization JM Altschuler, PA Parrilo arXiv preprint arXiv:2309.16530, 2023 | 13 | 2023 |
Near-linear convergence of the Random Osborne algorithm for Matrix Balancing JM Altschuler, PA Parrilo Mathematical Programming 198 (1), 363–397, 2023 | 10* | 2023 |
Approximating Min-Mean-Cycle for low-diameter graphs in near-optimal time and memory JM Altschuler, PA Parrilo SIAM Journal on Optimization 32 (3), 1791-1816, 2022 | 9 | 2022 |
Greed, hedging, and acceleration in convex optimization JM Altschuler Massachusetts Institute of Technology, 2018 | 7 | 2018 |
Shifted Composition I: Harnack and Reverse Transport Inequalities JM Altschuler, S Chewi arXiv preprint arXiv:2311.14520, 2023 | 6 | 2023 |